| 1 | /* |
| 2 | Copyright - 2017 2023 - wwwouaiebe - Contact: https://www.ouaie.be/ |
| 3 | |
| 4 | This program is free software; |
| 5 | you can redistribute it and/or modify it under the terms of the |
| 6 | GNU General Public License as published by the Free Software Foundation; |
| 7 | either version 3 of the License, or any later version. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License |
| 15 | along with this program; if not, write to the Free Software |
| 16 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 17 | */ |
| 18 | /* |
| 19 | Changes: |
| 20 | - v4.0.0: |
| 21 | - created from v3.6.0 |
| 22 | Doc reviewed 202208 |
| 23 | */ |
| 24 | |
| 25 | import { ZERO, ONE, DEGREES, EARTH_RADIUS } from '../../main/Constants.js'; |
| 26 | |
| 27 | /* ------------------------------------------------------------------------------------------------------------------------- */ |
| 28 | /** |
| 29 | This class contains methods for spherical trigonometry operations. |
| 30 | See theSphericalTrigonometry for the one and only one instance of this class |
| 31 | */ |
| 32 | /* ------------------------------------------------------------------------------------------------------------------------- */ |
| 33 | |
| 34 | class SphericalTrigonometry { |
| 35 | |
| 36 | /** |
| 37 | This method normalize a longitude (always between -180° and 180°) |
| 38 | @param {Number} Lng The longitude to normalize |
| 39 | @return {Number} The normalized longitude |
| 40 | */ |
| 41 | |
| 42 | #normalizeLng ( Lng ) { |
| 43 | return ( ( Lng + DEGREES.d540 ) % DEGREES.d360 ) - DEGREES.d180; |
| 44 | } |
| 45 | |
| 46 | /** |
| 47 | The constructor |
| 48 | */ |
| 49 | |
| 50 | constructor ( ) { |
| 51 | Object.freeze ( this ); |
| 52 | } |
| 53 | |
| 54 | /** |
| 55 | |
| 56 | This method gives an arc of a spherical triangle when the 2 others arcs and the opposite summit are know. |
| 57 | It's the well know cosinus law: |
| 58 | |
| 59 | - cos a = cos b cos c + sin b sin c cos A |
| 60 | - cos b = cos c cos a + sin c sin a cos B |
| 61 | - cos c = cos a cos b + sin a sin b cos C |
| 62 | |
| 63 | @param {Number} summit the opposite summit |
| 64 | @param {Number} arc1 the first arc |
| 65 | @param {Number} arc2 the second arc |
| 66 | |
| 67 | */ |
| 68 | |
| 69 | arcFromSummitArcArc ( summit, arc1, arc2 ) { |
| 70 | return Math.acos ( |
| 71 | ( Math.cos ( arc1 ) * Math.cos ( arc2 ) ) + |
| 72 | ( Math.sin ( arc1 ) * Math.sin ( arc2 ) * Math.cos ( summit ) ) |
| 73 | ); |
| 74 | } |
| 75 | |
| 76 | /** |
| 77 | |
| 78 | This method is also the well know cosinus law written in an other way.... |
| 79 | |
| 80 | cos C = ( cos c - cos a cos b ) / sin a sin b |
| 81 | |
| 82 | @param {Number} arc1 the first arc |
| 83 | @param {Number} arc2 the second arc |
| 84 | @param {Number} oppositeArc the opposite arc |
| 85 | |
| 86 | */ |
| 87 | |
| 88 | summitFromArcArcArc ( arc1, arc2, oppositeArc ) { |
| 89 | return Math.acos ( |
| 90 | ( Math.cos ( oppositeArc ) - ( Math.cos ( arc1 ) * Math.cos ( arc2 ) ) ) / |
| 91 | ( Math.sin ( arc1 ) * Math.sin ( arc2 ) ) |
| 92 | ); |
| 93 | } |
| 94 | |
| 95 | /** |
| 96 | This method returns the distance between two points |
| 97 | Since v1.7.0 we use the simple spherical law of cosines formula |
| 98 | (cos c = cos a cos b + sin a sin b cos C). The delta with the Leaflet method is |
| 99 | always < 10e-3 m. The error due to the earth radius is a lot bigger. |
| 100 | Notice: leaflet uses the haversine formula. |
| 101 | @param {Array.<Number>} latLngStartPoint The coordinates of the start point |
| 102 | @param {Array.<Number>} latLngEndPoint The coordinates of the end point |
| 103 | */ |
| 104 | |
| 105 | pointsDistance ( latLngStartPoint, latLngEndPoint ) { |
| 106 | if ( |
| 107 | latLngStartPoint [ ZERO ] === latLngEndPoint [ ZERO ] |
| 108 | && |
| 109 | latLngStartPoint [ ONE ] === latLngEndPoint [ ONE ] |
| 110 | ) { |
| 111 | |
| 112 | // the method runs infinitely when latLngStartPoint === latLngEndPoint :-( |
| 113 | return ZERO; |
| 114 | } |
| 115 | const latStartPoint = latLngStartPoint [ ZERO ] * DEGREES.toRadians; |
| 116 | const latEndPoint = latLngEndPoint [ ZERO ] * DEGREES.toRadians; |
| 117 | const deltaLng = |
| 118 | ( |
| 119 | this.#normalizeLng ( latLngEndPoint [ ONE ] ) - |
| 120 | this.#normalizeLng ( latLngStartPoint [ ONE ] ) |
| 121 | ) |
| 122 | * DEGREES.toRadians; |
| 123 | return Math.acos ( |
| 124 | ( Math.sin ( latStartPoint ) * Math.sin ( latEndPoint ) ) + |
| 125 | ( Math.cos ( latStartPoint ) * Math.cos ( latEndPoint ) * Math.cos ( deltaLng ) ) |
| 126 | ) * EARTH_RADIUS; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /* ------------------------------------------------------------------------------------------------------------------------- */ |
| 131 | /** |
| 132 | The one and only one instance of SphericalTrigonometry class |
| 133 | @type {SphericalTrigonometry} |
| 134 | */ |
| 135 | /* ------------------------------------------------------------------------------------------------------------------------- */ |
| 136 | |
| 137 | const theSphericalTrigonometry = new SphericalTrigonometry ( ); |
| 138 | |
| 139 | export default theSphericalTrigonometry; |
| 140 | |
| 141 | /* --- End of file --------------------------------------------------------------------------------------------------------- */ |
| 142 |